Non‐Halogen Solvent Processed Binary Organic Solar Cells with Efficiency of 19% and Module Efficiency Over 15% Enabled by Asymmetric Alkyl Chain Engineering

Author:

Zhong Zuiyi1,Chen Shihao1,Zhao Ju1,Xie Juxuan1,Zhang Kai1,Jia Tao2,Zhu Chang1,Jing Jianhua1,Liang Youcai1,Hong Ling1,Zhu Shengtian1,Ma Dongge1,Huang Fei1ORCID

Affiliation:

1. Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China

2. School of Optoelectronic Engineering Guangdong Polytechnic Normal University Guangzhou 510665 P. R. China

Abstract

AbstractThe effective molecular design of non‐fullerene acceptors is important to high‐efficiency organic solar cells. Herein, asymmetric alkyl chain engineering is applied to design a new acceptor named DTC11. Compared with the model accpetor DTY6 with two long‐branched alkyl chains (2‐decyltetradecyl) on dithie‐nothiophen[3.2‐b]‐pyrrolobenzothiadiazole central unit, DTC11 owns a 2‐decyltetradecyl chain and an undecyl chain in the inner bay side of the central unit. It is found that with such modification of asymmetric long alkyl side chains, the crystallinity, absorption coefficient, and exciton lifetime of DTC11 are all improved. Moreover, in comparison with D18:DTY6 device, non‐halogen solvent processed D18:DTC11 device shows enhanced exciton generation and dissociation, improved charge transport as well as weak recombination, promoting higher short‐circuit current density and fill factor. Consequently, D18:DTC11 device delivers an outstanding efficiency of 19.0%. More significantly, non‐halogen solvent processed D18:DTC11 large‐area module (active area 21 cm2) is fabricated by blade coating, and an impressive efficiency of 15.4% with fill factor of 74.6% is realized. This study demonstrates that the asymmetric alkyl chain engineering is a feasible strategy to design non‐fullerene acceptor with high‐performance and non‐halogen solvent processability, which are very essential for the commercialization of large‐area module.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3