12 µm‐Thick Sintered Garnet Ceramic Skeleton Enabling High‐Energy‐Density Solid‐State Lithium Metal Batteries

Author:

Bao Chengshuai12,Zheng Chujun12,Wu Meifen13,Zhang Yan13,Jin Jun23,Chen Huan13,Wen Zhaoyin123ORCID

Affiliation:

1. The State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Science Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Science Shanghai 200050 P. R. China

Abstract

AbstractUltrathin composite solid‐state electrolytes (CSSEs) demonstrate great promise in high‐energy‐density solid‐state batteries due to their ultrathin thickness and good adaptability to lithium metal anodes. However, uncontrolled dendrite growth and performance deterioration caused by the aggregation of inorganic powder restrict the practical application of ultrathin CSSEs. Herein, a flexible, self‐supporting Li6.5La3Zr1.5Ta0.5O12 (LLZO) ceramic skeleton is prepared by the tape‐casting method. Subsequently, a 12 µm‐thick CSSE with a 3D interconnection structure is achieved through in situ UV curing of ethoxylated trimethylolpropane triacrylate (ETPTA) in a ceramic skeleton (CS‐CSSE). This design includes a sintered LLZO ceramic, which can avoid the uneven distribution of the inorganic phase and regulate ion migration. Meanwhile, the cross‐linked ETPTA polymer electrolyte contributes to lower interfacial impedance. In addition, the continuous two‐phase interface can also provide a fast transmission channel for Li+. As a result, CS‐CSSE demonstrates superior Li+ transference number (0.83) and ionic conductivity (1.19 × 10‐3 S cm‐1) at 25 °C. As‐prepared Li|LiNi0.83Co0.12Mn0.05O2 batteries exhibit high discharge specific capacities of 185.4 mAh g‐1 at 0.1 C and average coulombic efficiency greater than 99%. The pouch cells exhibit high energy densities of 376 Wh Kg‐1 and 1186 Wh L‐1. This work provides new insights into the application of ceramics to high‐energy‐density solid‐state batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3