Reactive DC Sputtered TiO2 Electron Transport Layers for Cadmium‐Free Sb2Se3 Solar Cells

Author:

Don Christopher H.1ORCID,Shalvey Thomas P.1,Sindi Daniya A.12,Lewis Bradley1,Swallow Jack E. N.3,Bowen Leon4,Fernandes Daniel F.5,Kubart Tomas5,Biswas Deepnarayan6,Thakur Pardeep K.6,Lee Tien‐Lin6,Major Jonathan D.1ORCID

Affiliation:

1. Stephenson Institute for Renewable Energy Department of Physics University of Liverpool Liverpool L69 7ZF UK

2. Department of Physics College of Science Umm Al‐Qura University Makkah 24382 Saudi Arabia

3. Department of Materials University of Oxford Parks Road Oxford OX1 3PH UK

4. Department of Physics University of Durham Durham DH1 3LE UK

5. Department of Electrical Engineering Division of Solid‐State Electronics The Ångström Laboratory Uppsala University SE‐751 03 Uppsala Sweden

6. Diamond Light Source Ltd, Diamond House Harwell Science and Innovation Campus Didcot, Oxfordshire OX11 0DE UK

Abstract

AbstractThe evolution of Sb2Se3 heterojunction devices away from CdS electron transport layers (ETL) to wide bandgap metal oxide alternatives is a critical target in the development of this emerging photovoltaic material. Metal oxide ETL/Sb2Se3 device performance has historically been limited by relatively low fill factors, despite offering clear advantages with regards to photocurrent collection. In this study, TiO2 ETLs are fabricated via direct current reactive sputtering and tested in complete Sb2Se3 devices. A strong correlation between TiO2 ETL processing conditions and the Sb2Se3 solar cell device response under forward bias conditions is observed and optimized. Numerical device models support experimental evidence of a spike‐like conduction band offset, which can be mediated, provided a sufficiently high conductivity and low interfacial defect density can be achieved in the TiO2 ETL. Ultimately, a SnO2:F/TiO2/Sb2Se3/P3HT/Au device with the reactively sputtered TiO2 ETL delivers an 8.12% power conversion efficiency (η), the highest TiO2/Sb2Se3 device reported to‐date. This is achieved by a substantial reduction in series resistance, driven by improved crystallinity of the reactively sputtered anatase‐TiO2 ETL, whilst maintaining almost maximum current collection for this device architecture.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3