A Unifying Perspective of Common Motifs That Occur across Disparate Classes of Materials Harboring Displacive Phase Transitions

Author:

Grünebohm Anna1,Hütten Andreas2,Böhmer Anna E.34,Frenzel Jan5,Eremin Ilya3,Drautz Ralf1,Ennen Inga2,Caron Luana2,Kuschel Timo2,Lechermann Frank3,Anselmetti Dario2,Dahm Thomas2,Weber Frank4,Rossnagel Kai67,Schierning Gabi289ORCID

Affiliation:

1. Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) and Center for Interface‐Dominated High Performance Materials (ZGH) Ruhr‐University Bochum Universitätsstr. 150 44801 Bochum Germany

2. Department of Physics Bielefeld University Universitätsstr. 25 33615 Bielefeld Germany

3. Faculty of Physics and Astronomy Ruhr‐University Bochum Universitätsstr. 150 44801 Bochum Germany

4. Institute for Quantum Materials and Technologies Karlsruhe Institute of Technology 76021 Karlsruhe Germany

5. Institute for Materials Faculty of Mechanical Engineering Ruhr‐University Bochum Universitätsstr. 150 44801 Bochum Germany

6. Institut für Experimentelle und Angewandte Physik Christian‐Albrechts‐Universität zu Kiel 24098 Kiel Germany

7. Ruprecht Haensel‐Labor Deutsches Elektronen‐Synchrotron DESY 22607 Hamburg Germany

8. Research Center Future Energy Materials and System (RC FEMS) Research Alliance Ruhr University of Duisburg‐Essen 47057 Duisburg Germany

9. Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen 47057 Duisburg Germany

Abstract

AbstractSeveral classes of materials manifest displacive phase transitions, including shape memory alloys, many electronically correlated materials, superconductors, and ferroelectrics. Each of these classes of materials displays a wide range of fascinating properties and functionalities that are studied in disparate communities. However, these materials’ classes share similar electronic and phononic instabilities in conjunction with microstructural features. Specifically, the common motifs include twinned microstructures, anomalies in the transport behavior, softening of specific phonons, and frequently also (giant) Kohn anomalies, soft phonons, and/or nesting of the Fermi surface. These effects, phenomena, and their applications have until now been discussed in separate communities, which is a missed opportunity. In this perspective a unified framework is presented to understand these materials, by identifying similarities, defining a unified phenomenological description of displacive phase transitions and the associated order parameters, and introducing the main symmetry‐breaking mechanisms. This unified framework aims to bring together experimental and theoretical know‐how and methodologies across disciplines to enable unraveling hitherto missing important mechanistic understanding about the phase transitions in (magnetic) shape memory alloys, superconductors and correlated materials, and ferroelectrics. Connecting structural and electronic phenomena and microstructure to functional properties may offer so‐far unknown pathways to innovate applications based on these materials.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3