Affiliation:
1. International Joint Research Laboratory of New Energy Materials and Devices of Henan Province School of Physics and Electronics Academy for Advanced Interdisciplinary Studies Henan University Kaifeng 475004 P. R. China
2. College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
Abstract
AbstractDeveloping non‐graphitic carbons with unique microstructure is a popular strategy to enhance the significant potential in practical applications of sodium‐ion batteries (SIB), while the electrochemical performance imbalances arising from their intricate active surface and porous structure pose significant challenges to its commercialization. Inspired by the structure of biological cell membranes, N/P co‐doped hard carbon nanospheres (NPCS) anodes with abundant ultramicropores (≈0.6 nm) are proposed and synthesized as robust sodium anodes. Based on density functional theory calculations, optimizing ultramicropores can enable small Na+ to be well confined within the pores and hinder large solvent molecules from invading and reacting, introducing N/P species contributes to the rapid adsorption/diffusion of Na+. In situ XRD and Raman analysis suggest that the nanoconfinement strategy induced by abundant ultramicropores and N/P co‐doping enables highly reversible electrochemical reactions. Electrochemical test confirms that the nanoconfinement strategy endows the NPCS anode with high reversible capacity (376.3 mAh g−1 at 0.1 A g−1), superior initial coulombic efficiency (87.3% at 1.0 A g−1), remarkable rate capability (155.6 mAh g−1 at 50.0 A g−1) and excellent cycling stability (with capacity retention of ≈94.6% after 10 000 cycles), lightening a promising avenue for developing SIB with robust durability.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Foundation of Henan Educational Committee
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献