In Situ Probing the Crystallization Kinetics in Gas‐Quenching‐Assisted Coating of Perovskite Films

Author:

Qiu Shudi1,Majewski Martin2,Dong Lirong1,Jang Dongju1,Corre Vincent M. Le1,Cerrillo José Garcia1,Ronsin Olivier J. J.2,Yang Fu3,Guo Fei4,Zhang Kaicheng1,Lüer Larry15,Harting Jens26,Du Tian15ORCID,Brabec Christoph J.15,Egelhaaf Hans‐Joachim15

Affiliation:

1. Institute of Materials for Electronics and Energy Technology (i‐MEET) Department of Materials Science and Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstraße 7 91058 Erlangen Germany

2. Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HIERN) Forschungszentrum Jülich Fürther Straße 248 90429 Nürnberg Germany

3. Laboratory of Advanced Optoelectronic Materials Suzhou Key Laboratory of Novel Semiconductor‐optoelectronics Materials and Devices College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China

4. Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China

5. Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HIERN) Forschungszentrum Jülich Immerwahrstraße 2 91058 Erlangen Germany

6. Department of Chemical and Biological Engineering and Department of Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany

Abstract

AbstractThe pursuit of commercializing perovskite photovoltaics is driving the development of various scalable perovskite crystallization techniques. Among them, gas quenching is a promising crystallization approach for high‐throughput deposition of perovskite films. However, the perovskite films prepared by gas‐quenching assisted blade coating are susceptible to the formation of pinholes and frequently show inferior crystallinity if the interplay between film coating, film drying, and crystallization kinetics is not fully optimized. That arguably requires a thorough understanding of how single processing steps influence the crystallization kinetics of printed perovskite films. Here, in situ optical spectroscopies are integrated into a doctor‐blading setup that allows to real‐time monitor film formation during the gas‐quenching process. It is found that the essential role of gas quenching treatment is in achieving a smooth and compact perovskite film by controlling the nucleation rate. Moreover, with the assistance of phase‐field simulations, the role of excessive methylammonium iodide is revealed to increase grain size by accelerating the crystal growth rate. These results show a tailored control of crystal growth rate is critical to achieving optimal film quality, leading to fully printed solar cells with a champion power conversion efficiency of 19.50% and mini solar modules with 15.28% efficiency are achieved.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3