Promoting Electroreduction of CO2 and NO3 to Urea via Tandem Catalysis of Zn Single Atoms and In2O3‐x

Author:

Zhang Ying1,Li Zhuohang1,Chen Kai1,Yang Xing1,Zhang Hu2,Liu Xijun3,Chu Ke1ORCID

Affiliation:

1. School of Materials Science and Engineering Lanzhou Jiaotong University Lanzhou 730070 China

2. Environment and Materials University of Science and Technology Beijing Beijing 100083 China

3. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures, School of Resource, Environment and Materials Guangxi University Nanning 530004 China

Abstract

AbstractUrea electrosynthesis from co‐electrolysis of CO2 and NO3 (UECN) offers an innovative route for converting waste CO2/NO3 into valuable urea. Herein, Zn single atoms anchored on oxygen vacancy (OV)‐rich In2O3‐x (Zn1/In2O3‐x) are developed as a highly active and selective UECN catalyst, delivering the highest urea yield rate of 41.6 mmol h−1 g−1 and urea‐Faradaic efficiency of 55.8% at −0.7 V in flow cell, superior to most previously reported UECN catalysts. In situ spectroscopic measurements and theoretical calculations unveil the synergy of In/Zn1 sites and OVs in promoting the UECN process via a tandem catalysis mechanism, where Zn1‐OV site activates NO3 to form *NH2 while In‐OV site activates CO2 to form *CO. The formed *CO spontaneously migrates from the In‐OV site to the nearby Zn1‐OV site and then couples with *NH2 to generate *CONH2 which is ultimately converted into urea.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3