Long Cycle Life Rechargeable Moisture‐Enabled Electricity Cell

Author:

Shi Mengfan123,Yang Ya'nan123,Han Yuyang1,Wang Jiaqi1,Wang Ying1,Li Dan1,Lv Jinsheng1,Wu Wenpeng1,Wang Zhenglin123,Wei Xiaoyan123,Chen Nan123ORCID

Affiliation:

1. Key Laboratory of Cluster Science Ministry of Education of China Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314019 P. R. China

3. Tangshan Research Institute Beijing Institute of Technology Tangshan 063000 P. R. China

Abstract

AbstractMoisture‐enabled electricity generation (MEG) is a prominent renewable energy harvesting technology in hydrovoltaic power generation, boasting the broadest energy harvesting spectrum. However, practical application faces limitations due to irreversible performance degradation caused by structural changes and moisture‐generated carrier (MGC) losses in Moisture‐enabled electricity (ME) materials, rendering them non‐renewable. This study introduces a rechargeable moisture‐enabled electricity cell (rMEC) based on dual ME functional layers and active metal electrodes. The rMEC demonstrates outstanding power generation performance, with a single cell providing an output voltage of 1.08 V and a power density of 5.83 µW cm−2 through redox assistance. Moreover, it can be recharged when MGCs are lost, utilizing the reversibility of the redox reaction (moisture of H2O2 solution) for self‐repair. Notebly, the rMEC maintains stable operation for over 2080 h and undergoes 100 charging/working cycles, marking the longest span life record in MEG research history. When exposed to industrial wastewater/gases with oxidation characteristics, the rMEC not only completes charging but also facilitates the reuse of toxic waste resources. The environmentally friendly rMEC, with its long cycle life, significantly overcomes the limitations of non‐renewable ME materials, serving as a paradigm for promoting iterative upgrades in MEG technology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3