Unveiling Pseudo‐Inert Basal Plane for Electrocatalysis in 2D Semiconductors: Critical Role of Reversal‐Activation Mechanism

Author:

Zang Yanmei1,Wu Qian1,Wang Shuhua1,Huang Baibiao1ORCID,Dai Ying1,Heine Thomas234ORCID,Ma Yandong1

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Shandanan Str. 27 Jinan 250100 China

2. Fakultät für Chemie und Lebensmittelchemie TU Dresden Bergstraße 66c 01062 Dresden Germany

3. Center for Advanced System Understanding CASUS Helmholtz‐Zentrum Dresden‐Rossendorf e. V. Untermarkt 20 02826 Görlitz Germany

4. Department of Chemistry and ibs for nanomedicine Yonsei University Seodaemun‐gu Seoul 120‐749 Republic of Korea

Abstract

AbstractPartially occupied orbitals play a pivotal role in enhancing the performance of electrocatalyst by facilitating electron acceptance and donation, thus enabling the activation of molecular bonds. According to this principle, the basal plane of most 2D semiconductors is inert for electrocatalysis because of the fully occupied orbitals at the surface. Here, taking monolayer CrX (X = P, As, Sb) and Cr2PY (Y = As, Sb) as examples and through first‐principles calculations, it is revealed that even with fully occupied surface orbitals, the basal planes exhibit remarkable catalytic activity for the nitrogen oxide reduction reaction (NORR). This leads to the concept of the pseudo‐inert electrocatalyst. The underlying physics behind such pseudo‐inert character can be attributed to the reversal‐activation mechanism: contrary to conventional expectations, the adsorbed NO molecule reversely triggers the activity of the inert basal plane first, and then the basal plane activates NO molecules, forming the intriguing “Reversal Activation‐Transfer‐Donation‐Backdonation” process. This study further predicts that such pseudo‐inert character can demonstrate many distinctive properties, for example, it can introduce a novel type of surface catalysis, one that selectively targets radicals possessing an inherent dipole moment such as NO. The explored phenomena and insights greatly enrich the realms of electrocatalysis and 2D materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3