New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na‐ and K‐Ion Batteries

Author:

Igarashi Daisuke1ORCID,Tanaka Yoko1,Kubota Kei12ORCID,Tatara Ryoichi1ORCID,Maejima Hayato1,Hosaka Tomooki1ORCID,Komaba Shinichi1ORCID

Affiliation:

1. Department of Applied Chemistry Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku Tokyo 162‐8601 Japan

2. Research Center for Energy and Environmental Materials (GREEN) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

Abstract

AbstractHard carbon (HC) is a promising negative‐electrode material for Na‐ion batteries. HC electrochemically stores Na+ ions, resulting in a non‐stoichiometric chemical composition depending on their nanoscale structure, including the carbon framework, and interstitial pores. Therefore, optimizing these structures for Na storage by altering the synthesis conditions can enhance the capacity of Na‐ion batteries. In this study, HCs using MgO, ZnO, and CaCO3 as nanopore templates are systematically investigated, and the ZnO template is found to be particularly effective. By optimizing the concentration of ZnO embedded in the carbon matrix, utilizing a blend of zinc gluconate, and zinc acetate as starting materials, the optimal ZnO‐template HC demonstrates a reversible capacity of 464 mAh g−1 (corresponding to NaC4.8) with high initial coulombic efficiency of 91.7% and low average potential of 0.18 V versus Na+/Na. Thus, a Na‐ion battery full cell consisting of Na5/6Ni1/3Fe1/6Mn1/6Ti1/3O2 and the optimized ZnO‐template HC demonstrates a remarkable energy density of 312 Wh kg−1, comparable to that of a Li‐ion battery with LiFePO4 and graphite. Moreover, the ZnO‐template HC in a K half‐cell also displays a significant capacity of 381 mAh g−1, that is, KC5.8 where the alkali content is higher than stage‐1 graphite intercalation compounds, LiC6 and KC8.

Funder

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Japan Science and Technology Agency

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3