Boosting Fast‐Charging Capability of High‐Voltage Li Metal Batteries with Ionic Liquid Modified Ethereal Electrolyte

Author:

Ding Kai1,Begin Elijah J.2,Yuan Shouyi1,Zhong Mingyang1,Wang Yang2,Zhang Yingjie1,Zeng Xiaoyuan1,Bao Junwei Lucas2,Wang Yonggang3ORCID

Affiliation:

1. National and Local Joint Engineering Research Center for Lithium‐ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming Kunming University of Science and Technology Kunming 650093 P. R. China

2. Department of Chemistry Boston College Chestnut Hill MA 02467 USA

3. Department of Chemistry Shanghai Key Laboratory of Catalysis and Innovative Materials Center of Chemistry for Energy Materials Shanghai Fudan University Shanghai 200433 P. R. China

Abstract

AbstractGiven the high compatibility with Li metal anodes, ethereal electrolytes have found widespread use in Li metal batteries. Unfortunately, their applications in high‐voltage Li metal batteries are hampered by a limited electrochemical window. In this study, a diluted ethereal electrolyte (with Li salt concentration < 1.5 m) is developed containing 1 m lithium bis(fluorosulfonyl) imide (FSI) and 0.3 m LiNO3 in a N‐methyl‐N‐propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI):dimethyl ether (DME) (v:v = 1:4) mixture for Li metal batteries with an aggressive high‐voltage cathode via the formation of an anion‐enriched solvation sheath. In contrast to high‐concentration electrolytes, the formation of the anion‐enriched solvation sheath in this design is facilitated by the addition of ionic liquids. Further theoretical calculations indicate that the presence of FSI and NO3 anions in the first solvation sheath weakens the desolvation energy of the DME solvent, suggesting a faster desolvation process at the electrode interphase. Consequently, the designed electrolyte enables long‐term cycling of Li || LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells over 1000 cycles at a high rate of 10 C. More notably, it also allows for a long cycle life of 100 cycles under a high rate of 5 C, even with limited negative capacity to positive capacity (N/P) ratio of 1.

Funder

National Natural Science Foundation of China

American Chemical Society Petroleum Research Fund

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3