Modifying Roles of CuSbSe2 in Realizing High Thermoelectric Performance of GeTe

Author:

Jin Yang1,Qiu Yuting2,Bai Shulin1,Xie Hongyao1,Liu Shibo1,Hong Tao1,Gao Xiang3,Wen Yi1ORCID,Zhao Li‐Dong14ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

2. Beihang School Beihang University Beijing 100191 China

3. Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094 China

4. Tianmushan Laboratory Yuhang District Hangzhou 311115 China

Abstract

AbstractThermoelectric materials are widely researched for their energy conversion capabilities in the fields of power generation and refrigeration. And a superior thermoelectric conversion efficiency requires an excellent power factor and low thermal conductivity. Herein, a remarkable thermoelectric figure of merit(ZT) ∼ 2.6 at 673 K is realized in GeTe with 20% addition of CuSbSe2. Multiple synergistic effects of CuSbSe2 alloying collectively contribute to the excellent thermoelectric performance in GeTe. CuSbSe2 alloying effectively tunes ultrahigh carrier density of GeTe to the optimum. The introduction of Cu, Sb, and Se atoms create numerous point defects that scatter high‐frequency phonons. Additionally, surplus CuSbSe2 facilitates the formation of copper‐selenium phases, which embed at grain boundaries and generate interfaces after sintering. Combining the planar defects evolved from Ge vacancies, multi‐dimension defects effectively scatter multiple frequency phonons. An extraordinarily low lattice thermal conductivity of 0.3 Wm−1 K−1 at 673 K is obtained, approaching the theoretical estimation predicted by Cahill model. Eventually, the peak conversion efficiency of 7.4% is obtained in segmented device with ΔT of 419 K. The commingled effects of CuSbSe2 in GeTe further open up an elitist route to designing high‐performance materials.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Higher Education Discipline Innovation Project

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3