Gradient OH Desorption Facilitating Alkaline Hydrogen Evolution Over Ultrafine Quinary Nanoalloy

Author:

Ren Hao1,Zhang Zhihao2,Geng Zhanxin2,Wang Zhe1,Shen Fengyi1,Liang Xinhu1,Cai Zengjian1,Wang Yufang2,Cheng Dan3,Cao Yanan1,Yang Xiaoxin1,Hu Mingzhen12ORCID,Yao Xin1,Zhou Kebin124ORCID

Affiliation:

1. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 101408 P. R. China

2. National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environmental Material and Pollution Control Technology University of Chinese Academy of Sciences Beijing 101408 P. R. China

3. School of Pharmacy Weifang Medical University Weifang Shandong 261053 P. R. China

4. Binzhou Institute of Technology Weiqiao‐UCAS Science and Technology Park Binzhou Shandong 256606 P. R. China

Abstract

AbstractStrengthening OH adsorption on electrocatalyst is crucial to promote the rate‐determining water dissociation step of alkaline hydrogen evolution reaction (HER), whereas too‐intensified OH adsorption will poison the active sites instead. This dilemma remains one of the major challenges for improving the electrocatalysts’ alkaline HER activities. Herein, a surprising finding that the strongly adsorbed OH on an ultrafine quinary PtCoCuNiZn nanoalloy can be facilely desorbed via a unique gradient OH desorption pattern is reported, which tremendously boosts its alkaline HER activity. Theoretical simulations unravel that the ultrafine PtCoCuNiZn nanoalloy possesses versatile metal sites for adsorbing OH and the strongly adsorbed OH can be gradiently transferred to desorb from the ultrafine PtCoCuNiZn nanoalloy with moderate energy barriers for each transfer step that is the gradient OH desorption. In the meanwhile, the unique gradient OH desorption mode on the ultrafine PtCoCuNiZn nanoalloy is also experimentally evidenced by the in situ Raman spectroscopy and cyclic voltammetry measurements. This finding offers a fresh opportunity to expedite the alkaline HER without compromising the OH adsorption strength on electrocatalysts, which thus maximally promotes their water dissociation properties and unlocks the full potential of their alkaline HER activities.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3