Efficiency Boost of (Ag0.5,Cu0.5)(In1‐x,Gax)Se2 Thin Film Solar Cells by Using a Sequential Process: Effects of Ag‐Front Grading and Surface Phase Engineering

Author:

Tu Lung‐Hsin1,Tran Ngoc Thanh Thuy2ORCID,Lin Shih‐Kang234ORCID,Lai Chih‐Huang1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Tsing Hua University 101 Sec. 2, Kuang‐Fu Road Hsinchu 30013 Taiwan

2. Hierarchical Green‐Energy Materials (Hi‐GEM) Research Center National Cheng Kung University Tainan 70101 Taiwan

3. Department of Materials Science and Engineering National Cheng Kung University Tainan 70101 Taiwan

4. Program on Smart and Sustainable Manufacturing Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 70101 Taiwan

Abstract

AbstractPost‐selenization‐fabricated (using elemental Se vapor) Cu(In,Ga)Se2 solar cell efficiency is limited by a low open‐circuit voltage, which is attributable to the Ga‐deficient surface and insufficient grain growth. In this study, a band‐grading structure is demonstrated by combining Ag‐front and Ga‐back grading in selenized (Ag,Cu)(In,Ga)Se2 (ACIGSe) absorbers with a properly designed precursor structure (Mo/CuGa/In/AgGa) and high Ag content ([Ag]/([Ag]+[Cu]) = 0.5). The phase evolution during post‐selenization reveals that the precursor structure suppresses Ag2Se formation and promotes the ACIGSe phase formed at a low temperature with enhanced grain growth. A widened surface bandgap by Ag‐front grading substantially increases the open‐circuit voltage. Furthermore, Ag addition promotes ordered vacancy compound (OVC) formation on the front surface to enlarge the valence band offset, which in turn reduces interface recombination. Furthermore, the OVC phase also assists interface passivation. Promoting surface OVC phase by Ag addition is also validated by first‐principles calculations. Furthermore, the K‐doped CuGa precursor is used for a ACIGSe absorber to address the significantly reduced carrier density by the Ag addition. With a band‐grading structure and surface OVC phase, the superior device achieves an efficiency of > 19%, the highest efficiency by post‐selenization with an elemental Se source.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3