Interface Design for High‐Performance All‐Solid‐State Lithium Batteries

Author:

Wan Hongli1ORCID,Zhang Bao2,Liu Sufu1,Wang Zeyi1,Xu Jijian1,Wang Chunsheng1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20740 USA

2. School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore

Abstract

AbstractAll‐solid‐state batteries suffer from high interface resistance and lithium dendrite growth leading to low Li plating/stripping Coulombic efficiency (CE) of <90% and low critical current density at high capacity. Here, simultaneously addresses both challenges are simultaneously addressed and the Li plating/stripping CE is significantly increased to 99.6% at 0.2 mA cm−2/0.2 mAh cm−2, and critical current density (CCD) of > 3.0 mA cm−2/3.0 mAh cm−2 by inserting a mixed ionic‐electronic conductive (MIEC) and lithiophobic LiF‐C‐Li3N‐Bi nanocomposite interlayer between Li6PS5Cl electrolyte and Li anode. The highly lithiophobic LiF‐C‐Li3N‐Bi interlayer with high ionic conductivity (10−5 S cm−1) and low electronic conductivity (3.4×10−7 S cm−1) enables Li to plate on the current collector (CC) surface rather than on Li6PS5Cl surface avoiding Li6PS5Cl electrolyte reduction. During initial Li plating on CC, Li penetrates into porous LiF‐C‐Li3N‐Bi interlayer and lithiates Bi nanoparticles into Li3Bi. The lithiophilic Li3Bi and Li3N nanoparticles in LiF‐C‐Li3N‐Li3Bi sub‐interlayer will move to CC along with plated Li, forming LiF‐C/Li3N‐Li3Bi lithiophobic/lithiophilic sublayer during the following Li stripping. This interlayer enables Co0.1Fe0.9S2/Li6PS5Cl/Li cell with an areal capacity of 1.4 mAh cm−2 to achieve a cycle life of >850 cycles at 150 mA g−1. The lithiophobic/lithiophilic interlayer enables solid‐state metal batteries to simultaneously achieve high energy and long cycle life.

Funder

U.S. Department of Energy

Advanced Research Projects Agency

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3