Synergistic Co─Ir/Ru Composite Electrocatalysts Impart Efficient and Durable Oxygen Evolution Catalysis in Acid

Author:

Chong Lina12ORCID,Wen Jianguo3,Song Erhong4,Yang Zhenzhen1,Bloom Ira D.1,Ding Wenjiang2

Affiliation:

1. Chemical Science and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

2. Hydrogen Energy Center State Key Laboratory of Shanghai School of Chemical Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Minhang Shanghai 200240 China

3. Center for Nanoscale Materials Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

4. State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

Abstract

AbstractExploring highly active and robust catalysts, which have low precious metal content, to boost the kinetically sluggish oxygen evolution reaction (OER) is a key concern for hydrogen production via proton exchange membrane water electrolysis (PEMWE). Here, rational engineering of the morphology and the local geometric ligand environment of Ir and Ru catalysts are presented by using defect‐rich, lanthanum‐ and lithium‐doped Co3O4 nanofiber (LLCF) as substrate that promotes the electrocatalytic OER. Two catalysts, IrCoOx@LLCF and RuCoOx@LLCF, achieve mass activities of 1013.5 A gIr−1 and 1911.4 A gRu−1 in 0.1 m HClO4 at 300 mV overpotential, respectively, which are 26 and 50 times higher than that of commercial IrO2 and RuO2. Operando X‐ray absorption spectroscopy unveils the reversible structure of IrCoOx during the OER and the suppression of over‐oxidation of Co and Ir, giving rise to high stability. Density functional theory calculations reveal that the local geometric ligand engineering optimizes the binding of oxygenated species to the active sites, resulting in strongly enhanced catalytic activity.

Funder

Science and Technology Commission of Shanghai Municipality

U.S. Department of Energy

Basic Energy Sciences

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3