Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells

Author:

Meftahi Nastaran1ORCID,Surmiak Maciej Adam234,Fürer Sebastian O.23,Rietwyk Kevin James23,Lu Jianfeng235,Raga Sonia Ruiz23,Evans Caria6,Michalska Monika347,Deng Hao89,McMeekin David P.23,Alan Tuncay89,Vak Doojin4,Chesman Anthony S.R.4,Christofferson Andrew J.1,Winkler David A.101112,Bach Udo23,Russo Salvy P.1

Affiliation:

1. ARC Centre of Excellence in Exciton Science School of Science RMIT University Melbourne Victoria 3001 Australia

2. Department of Chemical and Biological Engineering Monash University Victoria 3800 Australia

3. ARC Centre of Excellence in Exciton Science Monash University Victoria 3800 Australia

4. CSIRO Manufacturing Clayton Victoria 3168 Australia

5. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan 430070 China

6. Elsa Reichmanis Laboratory School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA

7. Department of Materials Engineering Monash University Victoria 3800 Australia

8. Department of Material Science and Engineering Monash University Clayton Victoria 3800 Australia

9. Department of Mechanical and Aerospace Engineering Faculty of Engineering Monash University Clayton Victoria 3800 Australia

10. Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria 3086 Australia

11. Advanced Materials and Healthcare Technologies School of Pharmacy University of Nottingham Nottingham NG7 2RD UK

12. Monash Institute of Pharmaceutical Sciences Monash University Parkville 3052 Australia

Abstract

AbstractOrganic–inorganic perovskite solar cells (PSCs) are promising candidates for next‐generation, inexpensive solar panels due to their commercially competitive cost and high power conversion efficiencies. However, PSCs suffer from poor stability. A new and vast subset of PSCs, quasi‐two‐dimensional Ruddlesden–Popper PSCs (quasi‐2D RP PSCs), has improved photostability and superior resilience to environmental conditions compared to three‐dimensional metal‐halide PSCs. To accelerate the search for new quasi‐2D RP PSCs, this work reports a combinatorial, machine learning (ML) enhanced high‐throughput perovskite film fabrication and optimization study. This work designs a bespoke experimental strategy and produces perovskite films with a range of different compositions using only spin‐coating free, reproducible robotic fabrication processes. The performance and characterization data of these solar cells are used to train a ML model that allow materials parameters to be optimized and direct the design of improved materials. The new, ML‐optimized, drop‐cast quasi‐2D RP perovskite films yield solar cells with power conversion efficiencies of up to 16.9%.

Funder

Australian National Fabrication Facility

Australian Centre for Advanced Photovoltaics

Australian Renewable Energy Agency

Australian Research Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3