Photochemical Decomposition of Y‐Series Non‐Fullerene Acceptors Is Responsible for Degradation of High‐Efficiency Organic Solar Cells

Author:

Liu Tianran1ORCID,Burlingame Quinn C.2ORCID,Ivancevic Marko R.3ORCID,Liu Xiao1ORCID,Hu Junnan1ORCID,Rand Barry P.12ORCID,Loo Yueh‐Lin3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Princeton University Princeton NJ 08544 USA

2. Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544 USA

3. Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA

Abstract

AbstractOrganic photovoltaic cells that employ Y‐series non‐fullerene acceptors (NFAs) have recently achieved impressive power‐conversion efficiencies (>18%). To fulfill their commercial promise, it is important to quantify their operational lifetimes and understand their degradation mechanisms. In this work, the spectral‐dependent photostability of films and solar cells comprising several Y‐series acceptors and the donor polymer PM6 is investigated systematically. By applying longpass filters during aging, it is shown that UV/near‐UV photons are responsible for the photochemical decomposition of Y‐series acceptors; this degradation is the primary driver of early solar cell performance losses. Using mass spectrometry, the vinylene linkage between the core and electron‐accepting moieties of Y‐series acceptors is identified as the weak point susceptible to cleavage under UV‐illumination. Employing a series of device characterization, along with numerical simulations, the efficiency losses in organic photovoltaic cells are attributed to the formation of traps, which reduces charge extraction efficiency and facilitates non‐radiative recombination as the Y‐series acceptors degrade. This study provides new insights for molecular degradation of organic photovoltaic absorber materials and highlights the importance of future molecular design and strategies for improved solar cell stability.

Funder

National Science Foundation

U.S. Department of Energy

Basic Energy Sciences

Brookhaven National Laboratory

Princeton Center for Complex Materials

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3