Affiliation:
1. Department of Polymer Material and Engineering College of Materials and Metallurgy Guizhou University Guiyang 550025 China
2. School of Materials Science and Engineering Smart Sensing Interdisciplinary Science Center Nankai University & TKL of Metal and Molecule Based Material Chemistry Tianjin 300350 China
Abstract
AbstractFluoropolymers and metal halide perovskites (MHPs), as two classes of important piezoelectric materials, suffer from active phases through a facile process and brittleness led poor manufacturability, respectively. Here, TMCM‐CdCl3/PVDF nanocomposites (TMCM = trimethylchloromethyl ammonium, PVDF = polyvinylidene fluoride) are synthesized to overcome the above shortcomings. The abundant hydrogen (H) and chlorine (Cl) sites in TMCM‐CdCl3 can interlock with H and fluorine (F) atoms within PVDF via C─H···Cl and C─H···F interactions. This programming effect augments the dipole alignment and consequently promotes the formation of polar phases within PVDF. The devices made by these nanocomposites exhibit high energy harvesting properties surpassing established MHP/PVDF analogues, and prominent performance in sensing delicate human motions. Moreover, the devices show exceptional capabilities for detecting underwater ultrasound waves. The signal intensity is ≈4 times that of commercial PVDF film devices, and the frequency distortion is only a quarter of that observed in commercial ceramic transducers. This study opens up new possibilities for developing high‐performance piezoelectric nanocomposites and the creation of advanced electromechanical devices.
Funder
National Natural Science Foundation of China