High‐Throughput Experimentation Unveils Composition – Structure – Conductivity Relationships in the Extended LiPON System

Author:

Berthou William12ORCID,Legallais Maxime1ORCID,Sorieul Stéphanie3ORCID,Yildirim Gunay1,Bousquet Bruno2ORCID,Motto‐Ros Vincent4ORCID,Le Cras Frédéric25ORCID

Affiliation:

1. CEA CEA Tech Nouvelle Aquitaine Pessac F‐33600 France

2. CNRS Bordeaux INP Institut de Chimie de la Matière Condensée de Bordeaux ICMCB, UMR 5026 Univ. Bordeaux Pessac F‐33600 France

3. LP2iB UMR 5797 Université de Bordeaux CNRS Gradignan F‐33170 France

4. Institut Lumière Matière Univ. Lyon Université Claude Bernard Lyon 1 CNRS UMR 5306 Villeurbanne F‐69100 France

5. CEA LITEN Univ. Grenoble Alpes Grenoble F‐38000 France

Abstract

AbstractA high‐throughput experimental approach is developed to assess the correlations between chemical composition, structure and conduction properties of inorganic solid ionic conductors. This approach covers the preparation of a large number of samples by combinatorial synthesis, followed by fast characterization of the material library. The approach is primarily based on combinatorial synthesis by magnetron co‐sputtering and the characterization of thin film samples where lithium phosphorus oxynitride (LiPON) is chosen as a case study. A library of 76 LiPON materials is prepared in one experiment from the reactive co‐sputtering of LiPO3 and Li3PO4 in a N2 atmosphere. A specific sample design allows conducting thickness and impedance measurements, Raman spectroscopy, then fast and spatially‐resolved chemical analysis by Laser‐Induced Breakdown Spectroscopy (LIBS) on each material. Particular developments are devoted to this technique to achieve quantitative analysis of lithium in thin films. The materials cover a wide range of compositions with 0.95<Li/P<2.03 and a high N/P nitrogen content of ≈1.0‐1.2. Two distinct compositional ranges can be distinguished. For 0.95<Li/P<1.2, conductivity increases and the PO3− chains gradually disappear, whereas for 1.2<Li/P<2.03, conductivity stabilizes despite continuous structural evolution, in parallel with an increase in charge carrier concentration.

Funder

Horizon 2020

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3