Affiliation:
1. College of Materials Science and Engineering Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University Shenzhen 518055 P. R. China
2. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
3. Shenzhen Gein Graphene Center Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China
Abstract
AbstractRestricted by the poor ability of polymers to dissociate lithium salts and transport ions, solid‐state polymer electrolytes (SPEs) show extremely low ionic conductivities (≈10−7–10−5 S cm−1) and transference number of lithium ions (tLi+ ≈0.2–0.4) at 25 °C. Here, a novel polymer matrix of SPEs that simultaneously promotes lithium salt dissociation and ion transportation based on a high dielectric poly(vinylidene fluoride‐trifluoroethylene‐chlorotrifluoroethylene) (TerP) and an all‐trans conformational poly(vinylidene fluoride‐trifluoroethylene) (CoP), is developed. The high dielectric constant increases the polarity of CH2CF2 polar groups; then, brings a strong electronegative end that dissociates Li+ from lithium salts. The all‐trans conformation assures all fluorine atoms locate on one side of the chain, constructing ion hopping highways. As a result, the TerP/CoP (TC) SPE exhibits a high ionic conductivity (2.37 × 10−4 S cm−1) and a quite large tLi+ of 0.61 at 25 °C. The Li/TC SPE/Li symmetric cells cycle stably for more than half a year (>4500 h) and the LiNi0.8Co0.1Mn0.1O2/TC SPE/Li cell cycles steadily for 1000 and 600 cycles at 1 C and 2 C at 25 °C, respectively. This work paves a new way to prepare high‐performance SPEs by simultaneously modulating dielectric constants and conformation of polymers.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献