Medium‐Entropy Metal Selenides Nanoparticles with Optimized Electronic Structure as High‐Performance Bifunctional Electrocatalysts for Overall Water Splitting

Author:

Wu Hao1,Wang Zhichao1,Li Zexu2,Ma Yujie3,Ding Fan4,Li Fengqi1,Bian Haifeng1,Zhai Qingxi1,Ren Yilun1,Shi Yuxuan1,Yang Yurong1,Deng Yu1,Tang Shaochun1,Meng Xiangkang1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P. R. China

2. School of Chemistry Beihang University Beijing 100191 P. R. China

3. School of Intelligent Manufacturing and Information Jiangsu Shipping College Nantong Jiangsu 226010 P. R. China

4. Department of Computer Science Purdue University West Lafayette IN 47907 USA

Abstract

AbstractDevelopment of low‐cost and high‐efficiency electrocatalysts for overall water splitting is of great significance in the sustainable hydrogen economy. Herein, Fe1.2(CoNi)1.8Sex medium‐entropy metal selenides (MESes) nanoparticles are prepared via the selenylation of metal‐organic frameworks (MOFs) precursors. The optimal Fe1.2(CoNi)1.8Se6 MESe exhibits an outstanding electrocatalytic performance in alkaline media, offering low overpotentials of 66 and 216 mV at 10 mA cm−2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. A full electrolysis apparatus with Fe1.2(CoNi)1.8Se6 MESe as both cathode and anode displays an excellent performance, achieving 10 mA cm−2 at a potential of 1.55 V. Furthermore, density functional theory calculations demonstrate that the formation of MESe enhances the surface charge density and brings the d‐band center closer to Fermi level, as compared with that of the MOF precursor. Overall, the proposed strategy of medium‐entropy materials presents a low‐cost approach to fabricate energy storage and conversion devices.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3