Effective N‐Doping of Non‐Fullerene Acceptor via Sequential Deposition Enables High‐Efficiency Organic Solar Cells

Author:

Xie Meiling12,Zhu Lingyun1,Zhang Jianqi1,Wang Tong1,Li Yawen3,Zhang Weichao1,Fu Zhen4,Zhao Guanghan1,Hao Xiaotao4,Lin Yuze3,Zhou Huiqiong1,Wei Zhixiang12,Lu Kun12ORCID

Affiliation:

1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

4. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

AbstractCharge transport in the active layer, which can be effectively modulated by molecular doping of organic semiconductors, significantly affects the photovoltaic performance of organic solar cells (OSCs). However, it is difficult to control the dopant distribution in the bulk heterojunction (BHJ) films, which hinders efficient doping in OSCs. Herein, an effective n‐doping strategy is developed via sequential deposition (SD) of D18 donor and doped acceptor. The favorable vertical component distribution in SD films helps to optimize carrier transport pathways. The SD method confines the n‐dopant N‐DMBI to the acceptor layer, allowing positive effects of molecular doping. Consequently, the doped SD device exhibits superior charge transport with suppressed charge recombination, lower trap density, and enhanced charge extraction compared to the undoped one, resulting in a high power conversion efficiency of 19.55% for D18/L8‐BO binary OSCs. In addition, the doping does not affect the thermal stability of the devices, with the doped SD device retaining over 90% of its initial efficiency after 1200 h of heating at 80 °C. The universality of the SD doping method is also verified in other non‐fullerene acceptor systems. These results demonstrate the great potential of SD doping strategy for building high‐performance OSCs with enhanced charge transport.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3