Reconstruction of Electric Double Layer on the Anode Interface by Localized Electronic Structure Engineering for Aqueous Zn Ion Batteries

Author:

Liu Jingwen12,Li Caixia134ORCID,Lv Qingliang134,Chen Dehong5,Zhao Jinling6,Xia Xiaodan6,Wu Zexing12,Lai Jianping12,Wang Lei12ORCID

Affiliation:

1. State Key Laboratory Base of Eco‐Chemical Engineering International Science and Technology Cooperation Base of Eco‐chemical Engineering and Green Manufacturing Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China

3. College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China

4. Energy storage safety and technology innovation center of Qingdao Qingdao 266555 China

5. College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China

6. Qingdao Haifa Environmental Protection Industry Holdings Co., Ltd Qingdao 266427 China

Abstract

AbstractThe electric double layer (EDL) at the electrode/electrolyte interface plays a crucial role to the electrochemical reactions of zinc ion batteries. For Zn anode, the EDL consists of H2O dipoles, which can cause Zn corrosion and passivation. Herein, the localized electronic‐rich (LER) structure performing as soild electrolyte interphase (SEI) changes the electron distribution, leading to the rapid capture of Zn2+, thus promoting the desolvation of the cH2O shell. Moreover, the LER generates an electrostatic repulsion effect to SO42−. Consequently, a unique H2O‐poor EDL is reconstructed with the distribution of Zn2+‐H2O‐SO42−, which inhibits side reactions and improves the deposition kinetics of Zn2+. In situ Raman intuitively confirms that the zinc‐ion‐flux is uniform during the whole electroplating process. LER as regulator for EDL structure, leads to smooth and fast Zn2+ deposition. The performance enhancement is demonstrated by LER@Zn//LER@Zn cells, which exhibit exceptional lifespan for 4800 h. Furthermore, the LER@Zn///MnO2 cell shows improved cycling stability over 1500 cycles, with a high capacity of 124 mAh g−1 at 5 C.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3