3D Nanocomposite Thin Film Cathodes for Micro‐Batteries with Enhanced High‐Rate Electrochemical Performance over Planar Films

Author:

Lovett Adam J.1ORCID,Daramalla Venkateswarlu23,Nayak Debasis123,Sayed Farheen N.34,Mahadevegowda Amoghavarsha1,Ducati Caterina1,Spencer Ben F.5,Dutton Siân E.23,Grey Clare P.4,MacManus‐Driscoll Judith L.1

Affiliation:

1. Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK

2. Cavendish Laboratory University of Cambridge JJ Thompson Avenue Cambridge CB3 0HE UK

3. The Faraday Institution Quad One Harwell Campus Didcot OX11 0RA UK

4. Yusef Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK

5. Department of Materials University of Manchester Oxford Road Manchester M13 9PL UK

Abstract

AbstractHigh energy and high power density rechargeable micro‐batteries are a necessity for powering the next generation of flexible electronics, internet of things, and medical technology devices. In theory, significant improvements in the capacity, current and power densities of micro‐batteries would result if 3D architectures with enhanced interdigitated component interface areas and shortened ion diffusion path‐lengths  were  used. Further gains are achievable if the materials utilized have high crystalline quality and are preferentially oriented for fast lithium intercalation. In this work, this is achieved by creating epitaxial thin film cathodes comprised of nanopillars of LiMn2O4 (LMO) embedded in a supporting matrix of electronically conducting SrRuO3 (SRO). The first electrochemical study of such a 3D vertically aligned nanocomposite (VAN) that displays clear cathode redox signatures is provided, and demonstrates remarkable capacity retention under high‐rate regimes. The electrochemical performance is shown to be dependent on the nanopillar topography, namely the crystallographic orientation, nanopillar dimensions, and electrode/electrolyte interfacial surface area. This work offers a pathway to realizing 3D architectured micro‐batteries with high‐capacity retention under high‐rate conditions enabling fast charge capabilities.

Funder

European Research Council

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Henry Royce Institute

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3