High‐Efficiency Single‐Droplet Energy Harvester for Self‐Sustainable Environmental Intelligent Networks

Author:

Wang Hai Lu1,Zhang Bojian1,Chen Tianyu1,Mao Weining1,Wang Yifan12ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

2. CINTRA CNRS/NTU/THALES UMI 3288 Research Techno Plaza Singapore 637553 Singapore

Abstract

AbstractOur community is still far away from achieving self‐sustainable ambient intelligence, since it calls for rational energy layouts to satisfy the ubiquitous power demands from diverse terminal products. Harnessing energy directly from the surroundings thus provides ideal solutions. The majority of existing environmental harvesters rely on sophisticated procedures and expensive or toxic materials; while others attempt to streamline the complexity at the cost of compromising performance. This entails transducers that exhibit superb outputs and also employ cost‐effective, even recycled materials and straightforward protocols to render ubiquitous deployments. Here, a high‐efficiency droplet energy nanogenerator (DENG) is devised to satisfy all the requirements. The DENG is fabricated by directly coating a composite layer on a recycled digital video disk surface. It achieves superb electricity generation from one droplet, with an output voltage of >190 V at an instantaneous power density of 65 W m−2, and an energy conversion efficiency of 3.60%. Diverse demonstrations confirm the applicability of the DENG in environmental networks, encompassing self‐sustainable “on plants” sensing systems, smart building windows, and remote environmental monitoring platforms. In light of these superiorities, it is believed that the DENG may open up new alternative routes for future energy strategies.

Funder

Agency for Science, Technology and Research

Nanyang Technological University

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3