Cell‐Membrane Inspired Multifunctional Nanocoating for Rescuing the Active‐Material Microenvironment in High‐Capacity Sulfur Cathode

Author:

Feng Lanxiang1,Yan Rui2,Sun Xiao‐Rong2,Zhu Zhiwei2,Jia Weishang1,Yan Xinxiu1,Yang Yao‐Yue1,Li Shuang2,Fu Xuewei2,Yang Wei2,Wang Yu2ORCID

Affiliation:

1. School of Chemistry and Environment Southwest Minzu University Chengdu 610225 China

2. College of Polymer Science and Engineering Sichuan University Chengdu Sichuan 610065 China

Abstract

AbstractAchieving healthy active‐material microenvironment (ME@AM) for stable and efficient electron/ion transport around each active‐material particle is crucial for high‐performance battery electrodes. However, this goal has been proved extremely challenging for most high‐capacity AMs such as sulfur, owing to its notable volume change and severe shuttle effect. Here, a multifunctional hybrid material with zein protein reinforced catalytic single Cu atom/carbon composite (Cu─C) (zein/Cu─C) is coated onto sulfur/carbon (SC) particle, to prepare the advanced zein/Cu─C@SC core–shell particle. Similar to the multifunctional cell membrane well‐known in biology, this multifunctional zein/Cu─C coating helps build a healthy and stable ME@AM within sulfur cathode. Specifically, it can simultaneously provide robust protective shell for the AM particle, adsorption and catalyst function to the dissolved polysulfides, and AM surface treatment to improve AM/conductive agent interface. All these functions are the keys to build and maintain a healthy ME@AM in sulfur cathode. This study not only brings effective solutions to the challenges in volume‐change high‐capacity sulfur active materials and beyond, but also helps achieve comprehensive understanding of the key factors controlling the structuring and final quality of ME@AM.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3