Probing Charge Transport and Microstructural Attributes in Solvent‐ versus Water‐Based Electrodes with a Spotlight on Li–S Battery Cathode

Author:

Yari Saeed123,Bird Liam456,Rahimisheikh Sepideh7,Reis Albin Conde12,Mohammad Mahsa12,Hadermann Joke7,Robinson James56,Shearing Paul R.4,Safari Mohammadhosein123ORCID

Affiliation:

1. Institute for Materials Research (IMO‐imomec) UHasselt Martelarenlaan 42 Hasselt 3500 Belgium

2. Energyville Thor Park 8320 Genk 3600 Belgium

3. IMEC Division IMOMEC Diepenbeek 3590 Belgium

4. The ZERO Institute University of Oxford Oxford OX2 0ES UK

5. Electrochemical Innovation Lab Department of Chemical Engineering UCL London WC1E 7JE UK

6. The Faraday Institution Quad One Harwell Campus Didcot OX11 0RA UK

7. Electron Microscopy for Materials Science (EMAT) University of Antwerp Groenenborgerlaan 171 Antwerp B‐2020 Belgium

Abstract

AbstractIn the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water‐processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N‐Methyl‐2‐pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium‐sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X‐ray micro‐computed tomography reveals that in polyvinylidene fluoride (PVDF)/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose‐styrene butadiene rubber (CMC‐SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water‐based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short‐range connectivity or thin films with long‐range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water‐based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li‐S battery cells.

Funder

Faraday Institution

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3