Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytes

Author:

Fuchs Till12,Haslam Catherine G.34,Richter Felix H.12,Sakamoto Jeff34,Janek Jürgen12ORCID

Affiliation:

1. Institute of Physical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 D‐35392 Giessen Germany

2. Center for Materials Research (ZfM) Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 16 D‐35392 Giessen Germany

3. Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA

4. Department of Mechanical Engineering University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractAlkali metal filament penetration into solid electrolytes causes short circuit induced cell failure, commonly evaluated using the bidirectional critical current density (CCD) test with stepwise increases in current density in alternating directions across symmetric lithium cells. However, the CCD is neither intrinsic to the cell nor to the material but rather depends on various extrinsic factors, such as current profile, transferred charge, pressure, resting intervals, and interface chemistry. The purpose of this study is to disambiguate the interpretation of CCD analyses in the literature and propose alternative approaches to analyze the stability and kinetics of the alkali metal/solid electrolyte interface. Two types of failure modes of electrochemical cells with solid electrolytes are defined: 1) failure of the solid electrolyte by crack formation coupled with or followed by dendrite growth, and 2) failure of the alkali metal electrode by the formation of pores at the interface with the solid electrolyte followed by filament initiation that eventually leads to short‐circuiting. Therefore, the study recommends that CCD tests specify the failure mode. It is demonstrated that unidirectional polarization enablesunambiguous differentiation between failure modes. The proposals for bi‐ and unidirectional testing presented here are expected to provide more reliable and consistent CCD values across the community.

Funder

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3