Tailoring Microenvironments and In Situ Transformations of Cu Catalysts for Selective and Stable Electrosynthesis of Multicarbon Products

Author:

Ding Pan12,Kühne Julius12ORCID,Santra Saswati12,Zell Richard3,Zellner Philipp12,Rieth Tim12,Gao Jianyong12,Chen Jianian12,Zhou Guanda12,Dittloff Johannes12,Müller‐Caspary Knut3ORCID,Sharp Ian D.12ORCID

Affiliation:

1. Walter Schottky Institute Technical University of Munich Am Coulombwall 4 85748 Garching Germany

2. Physics Department TUM School of Natural Sciences Technical University of Munich Am Coulombwall 4 85748 Garching Germany

3. Department of Chemistry and Center for NanoScience Ludwig‐Maximilians‐Universität München Butenandtstr. 11 81377 Munich Germany

Abstract

AbstractElectrochemical CO2 reduction is of tremendous interest for storing chemical energy from renewable sources while reducing CO2 emissions. While copper is one of the most effective catalysts, it suffers from low selectivity and limited long‐term durability. Here, these limitations are overcome by engineering Nafion coatings on CuO nanoparticle‐based catalysts supported on glassy carbon. By tuning the Nafion thickness and internal structure, it is shown that both the selectivity to multicarbon (C2+) products and long‐term stability can be dramatically enhanced. Optimized catalyst layers reach Faradaic efficiencies for C2+ products of 86% during long‐term testing for 200 h, with no evidence for performance degradation. Indeed, the C2+ Faradaic efficiency increases during testing, which is attributed to favorable in situ electrochemical fragmentation of catalytic nanoparticles. Finally, the optimized Nafion/Cu catalytic coatings are utilized to create scalable membrane electrode assemblies for CO2 electrolysis, yielding significantly enhanced C2H4 selectivity (≈58%) and activity at technologically‐relevant currents of 1–2 A. These results highlight the potential for creating multi‐functional Nafion coatings on CO2 reduction catalysts to favorably tune the reaction environment, while also promoting in situ transformations to active and selective nanoscale structures and morphologies, not just on model surfaces but also in state‐of‐the‐art gas diffusion electrodes.

Funder

Alexander von Humboldt-Stiftung

Solar Technologies go Hybrid

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3