Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers

Author:

Bierling Markus12ORCID,McLaughlin David12ORCID,Mayerhöfer Britta12ORCID,Thiele Simon12ORCID

Affiliation:

1. Forschungszentrum Jülich GmbH Helmholtz‐Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11) Cauerstraße 1 91058 Erlangen Germany

2. Department for Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstraße 3 91058 Erlangen Germany

Abstract

AbstractFinding the optimum structure in porous transport electrodes (PTEs) for proton exchange membrane water electrolyzer anodes is one of the central current technological challenges. Both the structure of the porous transport layer (PTL) and its interaction with the catalyst layer are crucial in finding this optimum structure. In this regard, manufacturing the catalyst layer on top of a PTL as a structure‐building process must be understood to find improved transport electrode structures. This work presents a PTE tomography where the catalyst ink is directly processed on a PTL. The catalyst distribution of anodic PTEs is analyzed and compared via X‐ray microtomography and cross‐sectional imaging of embedded PTE samples. The majority of the catalyst lies within the first 100 µm of the PTE. Considering the penetration depth of the membrane, a maximum of 60% of the catalyst is effectively used. For the first time, a voxel‐based catalyst layer deposition model is created and analyzed that is based on simple assumptions in the deposition process. This deposition model fits very well with the previous tomographic analysis. In the future, this model will allow more profound insight into the manufacturing process and is an important prerequisite for a future optimum design of PTEs.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Reference68 articles.

1. Fuel Cells and Hydrogen 2 Joint Undertaking Hydrogen roadmap Europe : a sustainable pathway for the European energy transition https://data.europa.eu/doi/10.2843/341510(accessed: March 2021).

2. Current status, research trends, and challenges in water electrolysis science and technology

3. Silyzer 300: The next paradigm of PEM electrolysis https://assets.siemens-energy.com/siemens/assets/api/uuid:a193b68f-7ab4-4536-abe2-c23e01d0b526/datasheet-silyzer300.pdf(accessed: November 2021).

4. International Renewable Energy Agency (IRENA). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf(accessed: March 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3