Guided‐Growth Ultrathin Metal Film Enabled Efficient Semi‐Transparent Organic Solar Cells

Author:

Zhang Yuniu12ORCID,Zheng Jiawei1,Jiang Zhengyan1,He Xinjun1,Kim Jinwook1,Xu Luhang3,Qin Minchao3,Lu Xinhui3,Kyaw Aung Ko Ko2ORCID,Choy Wallace C. H.1ORCID

Affiliation:

1. Department of Electrical & Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong Hong Kong SAR 852 P. R. China

2. Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electrical & Electronic Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China

3. Department of Physics The Chinese University of Hong Kong Shatin Hong Kong SAR 852 P. R. China

Abstract

AbstractSemi‐transparent organic solar cells (STOSCs) have great potential in power‐generating windows for building facades and automobiles. At present, the evaporated metal thin film is widely used as the transparent top electrode in STOSCs owing to its relatively high conductivity. However, its transmittance in the visible range is sacrificed for fulfilling the thickness requirement of the electrical percolation threshold. Herein, a facile approach of introducing pre‐located Ag nanoparticles (NPs) with an optimized amount of ligands is demonstrated to promote the high‐quality and ultrathin evaporated Ag film formation for high‐performance transparent electrodes beyond that of merely evaporated electrodes. With the pre‐located and ligand‐optimized Ag NPs, the growth of evaporated Ag clusters can be guided to form high‐quality transparent electrode. Equally important, the approach also reduces the mis‐stacking defects of the electron transport layer and thus favors the carrier transportation/extraction to the electrode. By using these Ag NPs/7 nm Ag with a sheet resistance less than 15 Ω sq−1 and average transmittance of 59.30% in the visible region as the main structure in the top electrode, a PM6:L8‐BO based STOSC achieves light utilization efficiency of 4.422% with a remarkable power conversion efficiency of 12.80%. This work provides a facile strategy to not only realize high‐quality and transparent ultrathin electrode with detailed understanding, but also to promote the practical applications of semi‐transparent photonic devices.

Funder

University of Hong Kong

Innovation and Technology Fund

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3