Asymmetric Copper‐Sulphur Sites Promote C–C Coupling for Selective CO2 Electroreduction to C2 Products

Author:

Liang Liang1ORCID,Yang Li23,Heine Thomas23,Arinchtein Aleks1,Wang Xingli1ORCID,Hübner Jessica1,Schmidt Johannes4,Thomas Arne4,Strasser Peter1ORCID

Affiliation:

1. Department of Chemistry Chemical Engineering Division Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany

2. Theoretical Chemistry Technische Universität Dresden König‐Bau Bergstr. 66c 01062 Dresden Germany

3. Helmholtz‐Zentrum Dresden‐Rossendorf Abteilung Ressourcenökologie Forschungsstelle Leipzig Permoserstraße 15 04318 Leipzig Germany

4. Department of Chemistry Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany

Abstract

AbstractSustainable multicarbon e‐chemicals are of particular interest due to their potential future, high market values, and demand. In the direct electrocatalytic formation of multicarbon e‐chemicals from CO2, the elementary C–C coupling by CO dimerization is considered the rate‐limiting step. Here, a generalized surface structural design principle of asymmetric metal pair sites is proposed, explored, and experimentally tested in order to promote CO dimerization on surfaces. First a computational model of N‐doped Cu2S layers featuring adjacent, electronically asymmetric Cuδ1+‐Cuδ2+ (0 < δ1+ < δ2+ < 1) metal atomic pairs evidenced by their non‐uniform charge distribution is considered. The electronic asymmetry resulted in distinct CO adsorption energies and the associated self‐adjusting structures, which lowered C–C coupling energy barriers significantly. The computational hypotheses are experimentally tested using X‐ray photoelectron spectroscopy of Cu‐N moieties within N‐doped Cu2S layers. In‐situ Fourier‐transform infrared spectroscopy confirms linear *CO and *CO‐CO adsorption configuration by the peaks of ≈2080 and 1920 cm−1, respectively. After N‐doping, the catalytically C2 faradaic efficiency can significantly be elevated to 14.72% due to the promotion of C–C coupling.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz Association

H2020 European Research Council

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3