Binder‐Induced Ultrathin SEI for Defect‐Passivated Hard Carbon Enables Highly Reversible Sodium‐Ion Storage

Author:

Li Wenbin12,Guo Xiaoniu3,Song Keming3,Chen Jiacheng3,Zhang Jiyu3,Tang Guochuan3,Liu Chuntai12,Chen Weihua123ORCID,Shen Changyu12

Affiliation:

1. State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment Zhengzhou University Zhengzhou Henan 450002 P. R. China

2. National Engineering and Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou Henan 450001 P. R. China

3. College of Chemistry & Green Catalysis Center Zhengzhou University Zhengzhou Henan 450001 P. R. China

Abstract

AbstractHard carbon is one of the most promosing anodes for resource‐rich sodium‐ion batteries. However, an unsatisfactory solid–electrolyte‐interphase formed by irreversible electrolyte consumption caused by defects or oxygen‐containing functional groups of hard carbon impedes its further application. Herein, a novel composite binder that is composed of polar polymer chondroitin sulfate A (sodium salt) and polyethylene oxide by hydrogen bonding demonstrates defect passivation capability. This composite binder can reduce the exposure of defects by forming hydrogen bonds with oxygen functional groups on the hard carbon surface and inhibit the decomposition of electrolyte confirmed by in situ differential electrochemical mass spectrometry. In situ Raman and theoretical calculations reveal that multiple polar functional groups in chondroitin sulfate A (sodium salt) can accelerate the transport of Na+ by adsorbing and facilitate the decomposition of PF6 to form NaF. Additionally, polyethylene oxide in the composite binder can increase viscosity and accelerate the transport of Na+. As a result, an ultra‐thin (9 nm, cyro‐TEM) and NaF‐rich solid–electrolyte interphase is obtained, thereby the hard carbon anode achieves improved initial Coulombic efficiency (84%) and high‐capacity retention of 94% after 150 cycles in a NaPF6/ethylene carbonate/dimethyl carbonate electrolyte.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3