Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25‐Based Thermoelectric Devices

Author:

Wu Xinzhi1ORCID,Lin Yangjian2,Liu Chengyan1,Han Zhijia1,Li Huan1,Wang Yupeng1,Jiang Feng1,Zhu Kang1,Ge Binghui2,Liu Weishu13ORCID

Affiliation:

1. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

2. Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China

3. Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen Guangdong 518055 China

Abstract

AbstractElectrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state‐of‐the‐art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25‐based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single‐leg device exhibits a high power density (ωmax) of 2.6 W cm−2 and conversion efficiency (ηmax) of 8% under a temperature difference (ΔT) of 370 °C, which is the record‐breaking value in comparison to other Mg2(Si, Ge, Sn)‐based TE devices. Additionally, a two‐couple device with p‐type Bi2Te3 shows an excellent ωmax of 1.3 W cm−2 and ηmax of 5.4% under a ΔT of 270 °C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high‐performance devices using cutting‐edge TE materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3