Self‐Assembled Lithiophilic Interface with Abundant Nickel‐Bis(Dithiolene) Sites Enabling Highly Durable and Dendrite‐Free Lithium Metal Batteries

Author:

Wang Yaoda1,Ke Si‐Wen1,Qiao Gefei1,Liang Junchuan1,Zhou Xiaocheng1,Song Xinmei12,Tie Zuoxiu13,Yuan Shuai1,Zuo Jing‐Lin1,Jin Zhong14ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry MOE Key Laboratory of Mesoscopic Chemistry MOE Key Laboratory of High Performance Polymer Materials and Technology Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China

2. R&D Center Jiangsu BTR Nano Technology Co., Ltd. Changzhou Jiangsu 213200 P. R. China

3. Nanjing Tieming Energy Technology Co. Ltd. Nanjing Jiangsu 210093 P. R. China

4. Suzhou Tierui New Energy Technology Co. Ltd. Suzhou Jiangsu 215228 P. R. China

Abstract

AbstractDespite its ultrahigh theoretical capacity and ultralow redox electrochemical potential, the practical application of lithium metal anodes is still hampered by severe dendrite growth and unstable solid electrolyte interphase (SEI). Herein, a self‐assembled lithiophilic interface (SALI) for regulating Li electroplating behavior is constructed by introducing a meticulously synthesized Ni‐bis(dithiolene)‐based molecule (NiS4‐COOH) into a hybrid fluorinated ester‐ether electrolyte. The NiS4‐COOH molecules with carboxyl functional groups can spontaneously anchor on the Li metal surface to form a SALI, whose abundant Ni‐bis(dithiolene) sites can effectively reduce the initial Li deposition overpotential and guide the subsequent uniform Li electrodeposition. Moreover, due to the interaction between the coordination unsaturated Ni atom and the negatively charged PF6, the NiS4‐COOH additive can significantly change the ionic coordination environment in the electrolyte, which is greatly conducive to suppressing PF6 decomposition, optimizing SEI composition and accelerating Li‐ion transfer. Consequently, the NiS4‐COOH‐modified electrolyte leads to impressive electrochemical performance of Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 batteries, delivering ultrahigh Coulombic efficiencies, considerable capacity retention, and good rate performance even at high areal active material loadings. This study presents the great potential of SALIs derived from multifunctional metal‐organic hybrid electrolyte additives toward high‐specific‐energy Li metal batteries.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3