Molecular‐Level Regulation Strategies Toward Efficient Charge Separation in Donor−Acceptor Type Conjugated Polymers for Boosted Energy‐Related Photocatalysis

Author:

Wang Lu1,Liu Linghao1,Li Yan1,Xu Yuankang1,Nie Wenchao1,Cheng Zichang1,Zhou Qi1,Wang Lin1ORCID,Fan Zhuangjun1

Affiliation:

1. School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China

Abstract

AbstractThe development of efficient photocatalysts for artificial photocatalytic energy conversion is an intriguing strategy. Promisingly, conjugated polymers (CPs) have been actively investigated as alternatives to traditional inorganic semiconductors for photocatalysis due to their molecularly tunable optoelectronic properties, thus providing a great platform for molecular design. Incorporating donor (D) and acceptor (A) units into the backbone of CPs ensures an adequate D−A interface, which is essential for facilitating charge separation. This approach also allows for tunable bandgaps and optoelectronic properties, leading to significant progress in photocatalytic energy conversions in recent years. Here, the fundamentals of D–A type CPs for photocatalysis are initially outlined, followed by advanced experimental methods and density functional theory (DFT) calculations for investigating carrier dynamics. Then, a detailed exposition of the synthetic strategies for D−A type CPs is carried out. Their extensive applications in diverse energy‐related photocatalytic conversions, such as hydrogen evolution, oxygen evolution, overall water splitting, CO2 reduction, N2 reduction, and H2O2 evolution are comprehensively presented. This review provides new and comprehensive insights into the molecular‐level design of D−A type CPs catalysts for boosted photocatalytic energy conversion, which is expected to further advance the development of CPs in photocatalysis.

Funder

Taishan Scholar Project of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3