Exploring Direct Electrochemical Fischer–Tropsch Chemistry of C1–C7 Hydrocarbons via Perimeter Engineering of Au–SrTiO3 Catalyst

Author:

Yang Ju Hyun12,Sim Gi Beom3,Park So Jeong1,Rhee Choong Kyun1,Myung Chang Woo13ORCID,Sohn Youngku1ORCID

Affiliation:

1. Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea

2. Department of Chemical Engineering and Applied Chemistry Chungnam National University Daejeon 34134 Republic of Korea

3. Department of Energy Science Sungkyunkwan University Seobu‐ro 2066 Suwon 16419 Republic of Korea

Abstract

AbstractTraditionally, Fischer–Tropsch (FT) synthesis is performed using thermal catalysts and syngas (CO and H2) under high‐pressure and high‐temperature conditions. However, this study introduces an approach that relies on FT chemistry assisted by electrochemistry, referred to here as direct electrochemical (EC) FT chemistry, under ambient conditions. A series of CH4, CnH2n, and CnH2n+2 hydrocarbons (n = 1–7) is successfully produced over gold (Au) nanoparticle‐loaded perovskite strontium titanate (SrTiO3) nanostructures grown on rutile TiO2 supported on Ti. Au (1.0 nm)–SrTiO3 shows the best interface formation, with the highest Faradaic efficiency for C2+ hydrocarbons. This direct EC‐FT process proceeds via a C─C coupling chain growth reaction at the Au‐SrTiO3 interface as evidenced by the hydrocarbon weight distribution analysis and density functional theory calculations. The robust combination of experimental and computational findings reveals that optimum conditions for producing surface hydrogenation and C─C coupling polymerization, initiated by surface *CO and *H are achieved by controlling the undercoordinated Au at the perimeter sites of supported Au nanoparticles and by ensuring a harmonized density of states between Au and SrTiO3. This EC‐FT process opens a promising avenue for the direct conversion of CO2 and H2O into value‐added long‐chain hydrocarbons.

Funder

Chungnam National University

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3