High Performance and Durable Anode with 10‐Fold Reduction of Iridium Loading for Proton Exchange Membrane Water Electrolysis

Author:

Torrero Jorge1ORCID,Morawietz Tobias12ORCID,García Sanchez Daniel1ORCID,Galyamin Dmitry3ORCID,Retuerto Maria3ORCID,Martin‐Diaconescu Vlad4,Rojas Sergio3,Alonso José Antonio5,Gago Aldo Saul1ORCID,Friedrich Kaspar Andreas1

Affiliation:

1. Institute of Engineering Thermodynamics/Electrochemical Energy Technology German Aerospace Center (DLR) Pfaffenwaldring 38–40 70569 Stuttgart Germany

2. Faculty of Science, Energy and Building Services Esslingen University of Applied Sciences Kanalstraße 33 73728 Esslingen am Neckar Germany

3. Grupo de Energía y Química Sostenibles Instituto de Catálisis y Petroleoquímica CSIC C/Marie Curie 2 Madrid 28049 Spain

4. CELLS – ALBA Synchrotron Radiation Facility Carrer de la Llum 2–26 Cerdanyola del Vallès 08290 Spain

5. Instituto de Ciencia de Materiales de Madrid CSIC C/Sor Juana Inés de la Cruz 3 Madrid 28049 Spain

Abstract

AbstractProton exchange membrane water electrolysis (PEMWE) technology is especially advantageous for green H2 production as a clean energy vector. During the water electrolysis process, the oxygen evolution reaction (OER) requires a large amount of iridium (2‐3 mgIr cm−2) as catalyst. This material is scarce and expensive, representing a major bottleneck for large‐scale deployment of electrolyzers. This work develops an anode with 10‐fold reduction of Ir loading (0.2 mgIr cm−2) compared to what it is used in commercial PEMWE for more than 1000 h. An advanced catalyst based on an Ir mixed oxide (Sr2CaIrO6) is used for this purpose. Transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), and X‐ray absorption spectroscopy (XAS) analyses show that the unconventional structure of the reconstructed catalyst can contribute to the reduction of Ir in the catalyst layer. The reconfiguration of the ionomer in the catalyst layer is also observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), results in almost the full coverage of the catalytic layer with ionomer. The results presented herein demonstrate that it is possible to achieve high performance and stability in PEMWE with low Ir loading in the anode without showing significant degradation.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Reference65 articles.

1. IEA Global Energy Review 2019 – The Latest Trends in Energy and Emissions in 2019 2020.

2. Hydrogen Europe Clean Hydrogen Monitor 2022 2022.

3. IRENA Green Hydrogen Cost Reduction. Scaling up Electrolysers to Meet the 1.5 °C Climate Goal International Renewable Energy Agency Abu Dhabi2020.

4. European Commission A Hydrogen Strategy for a Climate Neutral Europe 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3