Reducing Voltage Losses in Organic Photovoltaics Requires Interfacial Disorder Management

Author:

Wang Rong12ORCID,Han Leng1,Li Ning134,Chochos Christos L.56,Gregoriou Vasilis G.56,Lüer Larry1,Brabec Christoph J.13

Affiliation:

1. Institute of Materials for Electronics and Energy Technology (i‐MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 91058 Erlangen Germany

2. Erlangen Graduate School in Advanced Optical Technologies (SAOT) Paul‐Gordan‐Straße 6 91052 Erlangen Germany

3. Helmholtz‐Institute Erlangen‐Nürnberg (HI‐ERN) Immerwahrstraße 2 91058 Erlangen Germany

4. Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China

5. Advent Technologies SA Stadiou Street, Platani, Rio Patras 26504 Greece

6. Institute of Chemical Biology National Hellenic Research Foundation (NHRF) 48 Vassileos Constantinou Avenue Athens 11635 Greece

Abstract

AbstractThanks to the introduction of non‐fullerene acceptors, efficiencies of organic photovoltaics are now approaching 20%. Closing the gap with inorganic photovoltaics requires minimizing voltage losses without penalizing charge extraction, for which microstructure control is crucial. However, the complex interplay between microstructure and charge generation, recombination, and extraction has so far not been unraveled. Here, a systematic study linking device performance to distinct microstructural features via machine learning is presented. Building bi‐layer devices allows to separately study the influence of aggregation and disorder on the energies and lifetimes of bulk and interfacial states. Unambiguous assignments of specific structural motifs to the device photophysics are thus possible. It is found that the control of aggregation‐caused quenching is decisive for the exciton splitting efficiency and thus the carrier generation. Furthermore, the static disorder at the donor–acceptor interface controls the nonradiative recombination by shifting the excited state population from the bulk toward the interface. Finally, the amount of disorder in the bulk is found decisive for charge extraction. The finding that charge generation, recombination, and extraction are controlled by distinct structural features, is the key to optimizing these motifs independently, which will pave the way for organic photovoltaics toward the detailed balance limit.

Funder

Deutsche Forschungsgemeinschaft

Hellenic Foundation for Research and Innovation

China Scholarship Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3