Affiliation:
1. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
2. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
Abstract
AbstractPoor electronic and ionic conductivity of electrode materials at low temperatures of −20 °C and below has significantly impeded development of batteries for cold conditions. However, for the first time, layer‐structured metallic vanadium diselenide (1T‐VSe2) is reported as a cathode material for low‐temperature Mg2+/Li+ hybrid batteries. A high electronic conductivity and fast ion diffusion kinetics for 1T‐VSe2 are demonstrated at selected temperatures, and a very safe 1T‐VSe2/Mg battery for operation at temperatures to −40 °C. The battery exhibits 97% capacity retention over 500 cycles, which is better performance than reported Mg‐based batteries. The Jahn–Teller effect in compressed configuration is initiated in 1T‐VSe2 with the change of electronic state occurring on electrochemical intercalation of alkali metal ions. Using combined experiment and theory via operando synchrotron X‐ray diffraction, ex situ X‐ray absorption spectroscopy and DFT computation, it is confirmed that the weak Jahn–Teller distortion contributes significantly to fast‐overall kinetics, structural stability, and high electronic conductivity of the electrode. Understanding at an atomic level of the mechanism is demonstrated, that provides valuable guidance in designing high‐performance electrode materials for low‐temperature batteries.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献