Controllable Sulfurization of MXenes to In‐Plane Multi‐Heterostructures for Efficient Sulfur Redox Kinetics

Author:

Li Xiang1,Zuo Yinze2,Zhang Yongzheng1,Wang Jian34,Wang Yanli1,Yu Huimei1,Zhan Liang1,Ling Licheng1,Du Zhiguo5,Yang Shubin5ORCID

Affiliation:

1. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) Shanghai Key Laboratory of Multiphase Materials Chemical Engineering State Key Laboratory of Chemical Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China

2. School of Materials Science & Engineering Fuzhou University Fuzhou Fujian 350108 China

3. i‐Lab & CAS Key Laboratory of Nanophotonic Materials and Devices Suzhou Institute of Nano‐tech and Nano‐bionics Chinese Academy of Sciences Suzhou 215123 China

4. Helmholtz Institute Ulm (HIU) D89081 Ulm Germany

5. School of Materials Science and Engineering Beihang University Beijing 100191 China

Abstract

AbstractAlthough in‐plane heterostructure with high ion transport pathway and unique interfacial atomic structure offers endless possibilities in the catalysis field, it is still challenging to directly synthesize MXene‐based in‐plane heterostructure due to the differences in crystal structures and growth conditions. Here, Mo2C–MoS2 in‐plane multi‐heterostructures are synthesized by topological conversion of sandwich‐like mesoporous Mo2C–SiO2 layers in sulfur vapor and subsequent removal of SiO2. During the conversion process, the exposed Mo2C will efficiently converted to 2H phase MoS2, meanwhile, the covered Mo2C remained stable, affording metallic Mo2C MXene and semiconducting MoS2 in‐plane multi‐heterostructures compatible in one layer. The resultant Mo2C–MoS2 layer has multiple heterointerfaces, build‐in electric fields as well as abundant defects. Such structural features enable to improve of the electrochemical active surface area (16.4 mF cm−2), which not only facilitates the bidirectional sulfur electrochemistry between solid Li2S and soluble lithium polysulfides, but also enhances the transfer kinetics of electrons and ions, giving rise to a high‐rate performance (642 mAh g−1 at 5 C) and a long‐term cycle life (1000 cycles at 5 C) in lithium–sulfur batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3