Pt3Ni Alloy Nanoparticle Electro‐Catalysts with Unique Core‐Shell Structure on Oxygen‐Deficient Layered Perovskite for Solid Oxide Cells

Author:

Song Yang12,Kim Hyunmin23,Jang Ji‐Hyun3ORCID,Bai Wenjun4,Ye Caichao4ORCID,Gu Jiamin2,Bu Yunfei2ORCID

Affiliation:

1. School of Environmental Science Nanjing Xiao Zhuang University Nanjing 211000 P. R. China

2. UNIST‐NUIST Energy and Environment Jointed Lab (UNNU) Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Nanjing University of Information Science and Technology (NUIST) Nanjing 210044 P. R. China

3. School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea

4. Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China

Abstract

AbstractSolid oxide cells (SOCs) are pivotal in electrochemical energy conversion technologies, but their operation at high temperatures necessitates the development of efficient and durable electro‐catalysts. Herein, a novel electro‐catalyst composed of Pt3Ni alloy nanoparticles exsolved on oxygen‐deficient PrBaMn1.8Pt0.15Ni0.05O5+δ layered perovskite oxides is presented. This design addresses the critical problem of nanoparticle agglomeration at high temperatures, a major hurdle for SOCs. The atomic‐scale mechanisms of oxygen vacancy formation and hydrogen evolution reaction kinetics in the material are unraveled through density functional theory calculations. A unique finding of this work is the formation of a core‐shell structure during water electrolysis, simultaneously enhancing the electrochemical performance and operational durability in both fuel cell and electrolysis cell modes. This study not only strengthens the potential of Pt‐Ni alloy nanoparticles as efficient electro‐catalysts for SOCs, but also opens up avenues for future exploration in energy‐related fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3