In Vivo Assembly of Photosystem I‐Hydrogenase Chimera for In Vitro PhotoH2 Production

Author:

Wang Panpan1ORCID,Frank Anna2ORCID,Appel Jens3ORCID,Boehm Marko3ORCID,Strabel Nadine2ORCID,Nowaczyk Marc M.2ORCID,Schuhmann Wolfgang1ORCID,Conzuelo Felipe4ORCID,Gutekunst Kirstin3ORCID

Affiliation:

1. Analytical Chemistry–Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D‐44780 Bochum Germany

2. Plant Biochemistry–Molecular Mechanisms of Photosynthesis Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstr. 150 D‐44780 Bochum Germany

3. Molecular Plant Physiology, Bioenergetics in Photoautotrophs University Kassel Heinrich‐Plett‐Straße 40 D‐34132 Kassel Germany

4. Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. Da República 2780‐157 Oeiras Portugal

Abstract

AbstractPhotosynthetic hydrogen (photoH2) production is an elegant approach to storing solar energy. The most efficient strategy is to couple the hydrogen‐producing enzyme, the hydrogenase (H2ase), directly to photosystem I (PSI), which is a light‐driven nanomachine found in photosynthetic organisms. PSI–H2ase fusions have been tested in vivo and in vitro. Both approaches have each their specific advantages and drawbacks. Here, a system to combine both approaches by assembling PSI–H2ase fusions in vivo for in vitro photoH2 production is established. For this, cyanobacterial PSI–H2ase fusion mutants are generated and characterized concerning photoH2 production in vivo. The chimeric protein is purified and embedded in a redox polymer on an electrode where it successfully produces photoH2 in vitro. The combination of in vivo and in vitro processes comes along with reciprocal benefits. The in vivo assembly ensures that the chimeric protein is fully functional and suited for the fabrication of bioelectrodes in vitro. At the same time, the photoelectrochemical in vitro characterization now permits to analyze the assemblies in detail. This will open avenues to optimize in vivo and in vitro approaches for photoH2 production in a target‐oriented manner in the future.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3