Achieving a Quasi‐Solid‐State Conversion of Polysulfides via Building High Efficiency Heterostructure for Room Temperature Na–S Batteries

Author:

Zhang Shengqiang1,Huang Miao1,Wang Yangyang1,Wang Zeping1,Wang Hui12,Liu Xiaojie12ORCID

Affiliation:

1. Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China

2. Shaanxi Key Laboratory for Carbon Neutral Technology Xi'an 710127 P. R. China

Abstract

AbstractThe practical application of room temperature sodium–sulfur (RT Na–S) batteries are prevented by the sulfur insulation, the severe shuttling effect of high‐order sodium polysulfides (Na2Sn, 4 ≤ n ≤ 8), and the sluggish reaction kinetics. Therefore, designing an ideal host material to suppress the polysulfides shuttle process and accelerate the redox reactions of soluble NaPSs to Na2S2/Na2S is of paramount importance for RT Na–S batteries. Here, a quasi‐solid‐state transformation of NaPSs is realized by building high efficiency MoC‐W2C heterostructure in freestanding multichannel carbon nanofibers via electrospinning and calcination methods (MoC‐W2C‐MCNFs). The multichannel carbon nanofibers are interlinked micro‐mesoporous structures that can accommodate volume change of electrode materials and confine the entire redox process of NaPSs (restraining the polysulfides shuttle process). Meanwhile, the MoC‐W2C heterostructure with abundant heterointerfaces can facilitate electron/ion transport and accelerate conversion of NaPSs. Consequently, the S/MoC‐W2C‐MCNFs cathode delivers a high capacity of 640 mAh g−1 after 500 cycles at 0.2 A g−1 and an excellent reversible performance of 200 mAh g−1 after ultralong 3500 cycles at 4 A g−1. What's more, the heterostructure catalytic mechanism (a quasi‐solid‐state transformation) is proposed and confirmed in carbonate electrolyte by combining experimentally and theoretically.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3