Affiliation:
1. Department of Chemistry and Biochemistry The University of Texas at El Paso El Paso TX 79968 USA
2. Cornell High Energy Synchrotron Source Wilson Laboratory Cornell University Ithaca NY 14853 USA
3. Center for Integrated Nanotechnologies Sandia National Laboratories Albuquerque NM 87111 USA
4. Eyring Materials Center Arizona State University Tempe AZ 85287 USA
Abstract
AbstractOvercoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2 when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level.
Funder
University of Texas at El Paso
National Science Foundation
Division of Materials Research
Office of Fossil Energy and Carbon Management
Office of Energy Efficiency and Renewable Energy
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献