Fundamentals and Rational Design of Heterogeneous C‐N Coupling Electrocatalysts for Urea Synthesis at Ambient Conditions

Author:

Wan Yuchi1ORCID,Zheng Muyun2,Yan Wei1,Zhang Jiujun1,Lv Ruitao2ORCID

Affiliation:

1. Institute of New Energy Materials and Engineering School of Materials Science and Engineering Fuzhou University Fuzhou 350108 China

2. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractElectrocatalytic C‐N coupling reaction is regarded as a promising strategy for achieving clean and sustainable urea production by coreducing CO2 and nitrogen species, thus contributing to carbon neutrality and the artificial nitrogen cycle. However, restricted by the sluggish adsorption of reactants, competitive side reactions, and multistep reaction pathways, the electrochemical urea production suffers from a low urea yield rate and low selectivity so far. In order to comprehensively improve urea synthesis performance, it is crucial to develop highly efficient catalysts for electrochemical C‐N coupling. In this article, the catalyst‐designing strategies, C‐N coupling mechanisms, and fundamental research methods are reviewed. For the coreduction of CO2 and different nitrogen species, several prevailing reaction mechanisms are discussed. With the aim of establishing the standard research system, the fundamentals of electrocatalytic urea synthesis research are introduced. The most important catalyst‐designing strategies for boosting the electrocatalytic urea production are discussed, including heteroatom doping, vacancy engineering, crystal facet regulation, atom‐scale modulation, alloying and heterostructure construction. Finally, the challenges and perspectives are proposed for future industrial applications of electrochemical urea production by C‐N coupling.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3