Affiliation:
1. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
2. Institute of Energy Materials Science University of Shanghai for Science and Technology Shanghai 200093 China
3. College of Sciences/Institute for Sustainable Energy Shanghai University Shanghai 200444 China
Abstract
AbstractLi metal is recognized as one of the most promising anode candidates for next‐generation high specific energy batteries. However, the fragile solid electrolyte interface (SEI) and heterogeneous Li plating/stripping in carbonate electrolyte severely encumber its practical application. Here, the heptafluorobutyramide (HFT) and lithium nitrate (LiNO3) are proposed to synergistically construct a robust SEI layer with excellent Li+ transport kinetics. The HFT can promote the dissolution of LiNO3 in carbonate electrolyte due to the strong cooperation. The results of theoretical calculations, in situ Raman and X‐ray photoelectron spectroscopy with deep Ar‐ion etching demonstrate that HFT and NO3− will be preferentially reduced to a Li3N/LiF‐rich composite structure on the surface of Li metal. Particularly, after the addition of additives, the first solvent shell is converted from solvent‐dominated to anion‐dominated structure, and thus a significantly lower Li‐ion desolvation barrier is presented. Consequently, the Coulombic efficiency (CE) of Li||Cu half cells using the designed carbonate electrolyte can reach 97.1%. The full cells matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM 811) can deliver high‐capacity retention over 100% at −20°C. This work provides an effective strategy for the regulation of solvation structure and the construction of high‐performance Li metal batteries.
Funder
National Natural Science Foundation of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献