Multifunctional Additives to Realize Dendrite‐Free Lithium Deposition in Carbonate Electrolytes toward Low‐Temperature Li Metal Batteries

Author:

Jiang Jinlong12,Li Meng1,Liu Xiaoyu3,Yi Jin3,Jiang Yong1ORCID,Wu Chao2,Liu Huakun2,Zhao Bing1,Li Wenrong3,Sun Xueliang3,Zhang Jiujun3,Dou Shixue2

Affiliation:

1. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China

2. Institute of Energy Materials Science University of Shanghai for Science and Technology Shanghai 200093 China

3. College of Sciences/Institute for Sustainable Energy Shanghai University Shanghai 200444 China

Abstract

AbstractLi metal is recognized as one of the most promising anode candidates for next‐generation high specific energy batteries. However, the fragile solid electrolyte interface (SEI) and heterogeneous Li plating/stripping in carbonate electrolyte severely encumber its practical application. Here, the heptafluorobutyramide (HFT) and lithium nitrate (LiNO3) are proposed to synergistically construct a robust SEI layer with excellent Li+ transport kinetics. The HFT can promote the dissolution of LiNO3 in carbonate electrolyte due to the strong cooperation. The results of theoretical calculations, in situ Raman and X‐ray photoelectron spectroscopy with deep Ar‐ion etching demonstrate that HFT and NO3 will be preferentially reduced to a Li3N/LiF‐rich composite structure on the surface of Li metal. Particularly, after the addition of additives, the first solvent shell is converted from solvent‐dominated to anion‐dominated structure, and thus a significantly lower Li‐ion desolvation barrier is presented. Consequently, the Coulombic efficiency (CE) of Li||Cu half cells using the designed carbonate electrolyte can reach 97.1%. The full cells matched with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM 811) can deliver high‐capacity retention over 100% at −20°C. This work provides an effective strategy for the regulation of solvation structure and the construction of high‐performance Li metal batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3