Superscalar Phase Boundaries Derived Multiple Active Sites in SnO2/Cu6Sn5/CuO for Tandem Electroreduction of CO2 to Formic Acid

Author:

Shi Yujie1,Wang Yijie1,Yu Jiayuan1,Chen Yuke1,Fang Chaoqiong1,Jiang Di1,Zhang Qinghua2,Gu Lin2ORCID,Yu Xiaowen3,Li Xiao1,Liu Hong13ORCID,Zhou Weijia1ORCID

Affiliation:

1. Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China

2. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China

3. State Key Laboratory of Crystal Materials Shandong University Jinan Shandong Province 250100 P. R. China

Abstract

AbstractThe electrocatalytic CO2 reduction reaction (CO2RR) to fuels driven by electrocatalysts is a viable strategy for efficient utilization of emitted CO2. CO2RR involves multiple‐steps, including adsorption, activation, hydrogenation, etc. At present, copper‐tin alloy catalysts have shown the capability to reduce CO2 to formic acid or formate. However, their poor adsorption and activation capacities for CO2 molecules, as well as the sluggish kinetics in *H supply restrict the proton‐coupled electron transfer processes in the electrocatalytic CO2RR to produce formic acid. In order to solve the above problems, the ultra‐small SnO2/Cu6Sn5/CuO nanocatalysts with superscalar phase boundaries are fabricated by laser sputtering. The introduction of SnO2 enhances the adsorption and activation of CO2, while CuO promotes H2O decomposition and provides abundant *H intermediates, resulting in tandem catalytic sites on the SnO2/Cu6Sn5/CuO composite catalysts and thus leading to excellent CO2RR activity and high selectivity to formic acid. The Faradic efficiency of formic acid (FEHCOOH) at the SnO2/Cu6Sn5/CuO electrode reaches 90.13% along with a high current density of 25.2 mA cm−2 at −0.95 V versus reversible hydrogen electrode. The role of the multiphase boundaries constructed by introduction of oxides is confirmed by in situ infrared spectroscopy and kinetic isotope effects experiments, which is consistent with the design concept.

Funder

Taishan Scholar Project of Shandong Province

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3