Stabilizing Zn Metal Anodes via Cation/Anion Regulation toward High Energy Density Zn‐Ion Batteries

Author:

Zhao Ran1,Yang Jingjing1,Han Xiaomin1,Wang Yahui12,Ni Qiao3,Hu Zhifan1,Wu Chuan12ORCID,Bai Ying1

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314019 P. R. China

3. Faculty of Arts and Sciences Beijing Normal University Zhuhai 519087 P. R. China

Abstract

AbstractAqueous zinc batteries (AZBs) are promising energy storage devices owing to their high safety, low cost, and environmental friendliness. However, energy density improvement and lifespan prolongation of AZBs are impeded by the poor reversibility of Zn anodes. Instead of focusing on restraining the water activity that has been widely discussed, this work reports a unique strategy to eliminate the side reactions, which is the simultaneous regulation of cation and anion fluxes by microporous material. The as‐synthesized protective layer possesses an excellent sieving ability to repel sulfate infiltration by channel effect and via the electric field, and homogenizes Zn ion flux to achieve a dendrite‐free morphology, which is confirmed by the electrochemical and theoretical investigations. The protected anode exhibits a long lifespan (2400 h), deep Zn plating/stripping, and high current tolerance (100 mA cm−2). As a result, the full battery achieves a capacity retention of 76.4% after 7500 cycles, and in the anode‐free configuration, a high energy density of 192.8 Wh kg−1 is observed, which is more than 50 times that of a full battery with a Zn foil anode. By regulating the cations and anions simultaneously, the proposed strategy provides a low‐cost remedy to achieve the practical scale‐up of AZBs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3